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D E D I C A T E D  TO PROFESSOR P A U L  H A G E N M U L L E R  

Magnetic and t ransport  properties of  the layered (R3m) metastable  sys tem Lil_~_xNii+~O2 and the 
cubic spinel Li[Ni2]O 4 are reported for samples  prepared from (Li l_~Ni~)NiO2, 8 = 0.04 and 0.08, by 
chemical  extract ion of  li thium with NOzPF 6 at room temperature .  Transformat ion  of  the layered phase  
to the cubic spinel was accompl ished by heating (8 + x) ~ 0.5 samples  to 250-300~ in an evacuated ,  
sealed quartz  tube. These  mixed-valent  compounds  are small-polaron semiconductors ,  and the low- 
spin Ni 3+ ions carry a nickel magnet ic  momen t  close to 1 P-B; the  low-spin Ni 4~ ions are diamagnetic .  
The  magnet ic  interactions are those  predicted for partially filled crystal-hield orbitals of  e parentage,  
which are associa ted with or bonding in octahedral  sites. Never the less ,  there is no cooperat ive 
Jahn-Te l l e r  distortion of  the type expected for strong Jahn-Te l l e r  ions with localized e-orbital configu- 
rations in octahedral  sites. These  findings cast  doubt  on any interpretation of these  oxides that  leaves 
unmodified the magni tude of  the Hubbard  U and the positions of the redox energies f rom their values  
in NiO. �9 1992 Academic Press, Inc. 

1. Introduction 

Antiferromagnetic NiO is well described 
(1) by an ionic model in which the covalent 
Ni-O mixing is taken into account via 
second-order perturbation theory within the 
crystal-field description of the localized 
"3d"  electrons. In this model, the Ni-Ni 
and Ni-O-Ni interactions are then de- 
scribed by the second-order superexchange 
perturbation, and an important distinction 
is made between Ni-Ni and Ni-O-Ni inter- 
actions. Although the strong Ni-O-Ni in- 
teractions appear to approach the condition 
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for a transition from localized-electron to 
itinerant-electron antiferromagnetism, nev- 
ertheless the ionic model provides a satis- 
factory description of the ground-state prop- 
erties of stoichiometric NiO. 

On the other hand, problems begin with 
the use of an ionic model to interpret the 
spectroscopic data (2); the conclusion that 
NiO has a charge-transfer rather than a 
"correlation" energy gap implies--within 
the ionic model--that, on oxidation, holes 
are introduced into a band of primarily O-2p 
character rather than into one of primarily 
Ni-3d character. Earlier observation (3) that 
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mobile holes introduced into NiO have an 
itinerant-electron character  (the mobility 
has no activation energy) had already en- 
couraged such a conclusion (4). Yet, elec- 
trochemical data on, for example, the nickel 
electrode of a Cd-Ni  cell imply the presence 
of  a well-defined Ni 3 +/2 + coup le - -a t  least at 
the surface--ofNiO2_x(OH)x,  1 < x < 2 (5). 
If  the situation appears ambiguous for the 
Ni 3+/2+ couple, then how should we think 
about the mixed-valent oxides having, for- 
mally, a Ni 4+/3 + redox couple? The problem 
thus raised is particularly germane to our 
description of  the high-T c copper-oxide su- 
perconductors.  

In this paper we explore experimentally 
the systems Lit xNiO2 and Li[Ni2]O 4 con- 
taining, formally, the mixed-valent redox 
couple Ni 4+/3+ We distinguish the 90 ~ 
N i - O - N i  interactions occurring in these 
compounds from the 180 ~ N i - O - N i  interac- 
tions found in the metallic, Pauli paramag- 
netic perovskite LaNiO3. 

2. Experimental 

2.1. Chemical Synthesis 

The nominal parent compound LiNiO2 
was prepared in two ways. In the first 
method, stoichiometric amounts of NiO and 
LizCO 3 were ground finely in an agate mor- 
tar to form a homogeneous mixture. The 
mixture was heated at 500~ for 5 h before 
the temperature was slowly raised to 900~ 
After the mixture was heated at 900~ for 
48 h with intermittent grinding, the X-ray 
powder  diffraction indicated a single-phase 
product.  In the second method, Li2CO 3 was 
dissolved in dilute nitric acid; nickel acetate 
was added in appropriate proportion and 
stirred until a clear solution formed. This 
solution was heated slowly to evaporate  the 
water; the dried mixture was transferred to 
an alumina boat, heated at 500~ for 5 h, 
and finally fired at 700~ for 24 h to form 
LiNiO2. The first method yielded a highly 

sintered compound having the composit ion 
Lio.96Nil.0402 ; the second gave a soft prod- 
uct with the composition Lio.92Nil.080 2. 

Chemical extraction of lithium from these 
parent compositions was carried out with 
the oxidizing agent NO2PF 6 in acetonitrile 
under an argon atmosphere: 

CH3CN 
Lil_sNil+80 2 + xNO2PF 6 

Lil_ 8 xNt+802 + xNO 2 + xLiPF  6. (1) 

LiPF 6 is soluble in acetonitrile; the oxide 
product  remains behind as the only solid 
phase. The product  was washed several 
times with acetonitrile and dried in vacuum; 
it was then stored in an argon-filled glove 
box. 

The reaction of Lil_sNil+80~ with 
NO2PF 6 is not 100% efficient, and excess 
NO2PF6 had to be used. Also, some of the 
Lil_8_xNi~ +802 decomposes  into solution, 
as is made evident by the blue color of  the 
filtrate. The experiment  was repeated at 
60~ and also in an ice bath with no improve- 
ment in the yield. At 60~ the reaction was 
vigorous and the product  was not a single 
phase. At lower temperatures the reaction 
did not occur. The Lil_8_xNil +802 composi- 
tions obtained from Li0.96Nil.0402 fell in the 
range 0.0 -< x - 0.40; on the other hand, a 
composit ion Li0.32Nil.0802 was obtained as a 
single phase from the Li0.92Ni~.080 2 parent 
compound.  

The spinel Li[Ni2]O 4 had already been 
prepared from a nominal Li0.sNiO 2 sample 
prepared electrochemically (6); the spinel is 
only stable below 300~ and a temperature  
of  250~ is needed to transform metastable 
Li0.sNiO 2 to Li[Ni2]O 4. Since we found it 
difficult to obtain chemically the exact stoi- 
chiometry Li0.sNiO2, we proceeded to make 
nominal Li[Ni2]O 4 by two methods. In one 
we started with a sample analyzing as 
Li0.58Ni~.040 2 ; in the other  we used a calcu- 
lated mixture of Li0.5 + ~NiO2 and Li0.5 _ ~ NiO2 
corresponding to a net Li0.sNiO 2 . Each type 
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of  sample was pelletized and heated in an 
evacuated,  sealed quartz tube at tempera- 
tures 250-300~ for several days. 

2.2 Character izat ion 

All samples were stored in an argon-filled 
glove box. They  were characterized by 
X-ray powder  diffraction recorded with a 
Philips diffractometer. Li contents were de- 
termined with a Perk in-Elmer  1100 Atomic 
Absorption Spectrophotometer .  Resistance 
measurements were made on sintered pel- 
lets with a two-probe method; magnetic- 
susceptibility data were obtained in Bor- 
deaux with an automatic susceptometer  
(DSM8-type, MAVICS) at 1.8 T. 

3. Results and Discussion 

3.1 Structural  Considerat ions  

The parent compositions Lil ~Nil+802, 
8 = 0.04 and 0.08, have a layered structure 
isomorphous with that of oe-NaFeO2 (7). 
The (111) octahedral-site planes of a face- 
centered-cubic oxide-ion array would be oc- 
cupied alternately by Li § and Ni 3 § ions in 
stoichiometric LiNiO2. It was already noted 
many years ago (8) that stoichiometric 
LiNiO z is extremely difficult to prepare;  
magnetic and density measurements  also 
showed that the lithium deficiency is not due 
to Li+-ion vacancies in the lithium layers, 
but to the presence of  excess nickel occu- 
pying Li+-ion sites. Thus the parent com- 
pounds 8 = 0.04 and 0.08 have the com- 
positions ' + .2 + '3 + '2 + ( L l o . 9 6 N l o . 0 4 ) ( N l o . 9 6 N l o . 0 4 ) O  2 a n d  

�9 + .2+ .3+ .2+ (L10.92N10.08)(N10.92N10.08)O 2 , respectively. 
This situation places the Fermi energy E F 
of the parent compositions in the Ni 3+/2+ 
couple rather than the Ni 4§ + couple. 

The layered structure makes possible the 
room-temperature  extraction of  lithium; the 
Li + ions are mobile at room temperature 
in such an oxide. However ,  extraction of  
lithium requires moving E v f rom the Ni 3 +/2 + 

couple to the Ni 4+/3+ couple, which is itself 
highly oxidizing. It is therefore difficult to 
find a strong enough oxidant to extract  Li 
from Lil 8Nil +~O2 chemically with 100% ef- 
ficiency. Consequently initial experiments 
(6, 9) used electrochemical lithium extrac- 
tion. However ,  this method yields small 
samples that may be inhomogeneous,  so 
physical measurements  were not attempted. 
Recently,  Wizansky et al. (10) have re- 
ported the chemical extraction of lithium 
from LiCoO2 with the oxidizing agents 
NO2PF 6 and MoF 6. This report  prompted 
our use of  NO2PF 6 as the oxidizing reagent 
for extracting lithium chemically from the 
parent compounds Li t_aNi~ +802 ,  ~ = 0.04 
and 0.08. Although the reaction was not 
100% efficient, it did permit the preparation 
of samples Li I_~_~Ni I +aO2 and Li[Ni2]O 4 in 
sufficient quantity for physical measure- 
ments to be made. 

Figure 1 shows the variation of  lattice pa- 
rameters with x for Li~_ a xNil+aO2; the 
0 - x -< 0.40 samples were obtained by lith- 
ium extraction from Li0.96Nil.040 2 while the 
x > 0.45 samples were obtained from 
Li0.92Nit.080 z . The decrease in the a parame- 
ter with decreasing Li+-ion concentrat ion 
reflects the decrease in L i + - L i  + electro- 
static repulsion within a basal plane as well 
as the smaller effective size of a Li+-ion 
vacancy;  the increase in the c parameter  
reflects the electrostatic repulsion between 
oxide- ion  planes as the positive charge be- 
tween these planes is decreased. The change 
in slope of a vs x at x ~ 0.45, which corres- 
ponds to x + 8 ~ 0.05, may reflect primarily 
a Li+-ion ordering, but it also appears to 
reflect some irreversible displacement of 
nickel to the Li-atom planes (see below). 

The open-circuit voltage Voc versus a lith- 
ium anode is also shown in Fig. I for  Li0.96 x 
Ni~.0402 as a function of  x. In the range 
0.0 -< x -< 0.46, the Voc vs x curve increases 
linearly; for x > 0.46 it remains constant.  
However ,  the lattice parameters  vary con- 
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FIG. 1. Variation of lattice parameters and open- 
circuit voltage with x for Li l_8_~Ni I +~O 2 . The lattice 
parameters plotted correspond to Lio.96_xNii.040 2 for 
0 --< x -< 0.40 and to Lio.92_xNil 080 2 for x > 0.45. The 
open-circuit voltages correspond to Lio.96_xNit.040 2 for 
0 -< x_< 0.95. 

t inuously with x without any evidence for 
two crystallographic phases in this range on 
chemical delithiation. Two explanations are 
plausible forx > 0.46: either the open-circuit 
voltage becomes so large that the electrolyte 
is oxidized or the displacement of  nickel 
to the Li-atom planes is controlled by the 
retention o f  a constant Fermi energy with- 
out the formation of a discrete second 
phase. 

The powder X-ray diffraction profiles for 
Li0.96Ni1.040 2 and Li0.58Nil.040 2 of Fig. 2(a) 
and (b) show a large decrease in the intensit- 
ies of the peaks with increasing x, but the 

intensity of  the critical (003) peak remains 
unchanged,  which is unlike the case of  
Li~_xVO2 with x > 0.33 (11) where V atoms 
are displaced to the Li-atom planes. There 
is no evidence of  a significant nickel-atom 
displacement to the Li-atom planes over the 
range 0 -< x -< 0.38 in Li0.96_xNi].040 2. The 
changes in peak intensities may reflect prob- 
lems with preferred orientation. Since a dis- 
placement of  the transition-metal atoms 
from one octahedral-site (I 11) plane to the 
next is via a tetrahedral site, the greater 
metastability of  nominal Li l_xNiO2 relative 
to Lij _xVO 2 can be understood. The dispro- 
portionation reaction 2V 4+ --~ V 5+ + V 3+ 
requires little energy, and the V 5+ ion has a 
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FIG. 2. X-ray powder diffraction patterns for (a) 
Lio96Nii.0402 (b) Lio.58Ni~0402, and (c) Li[Ni2}O 4. 
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FIG. 3. Structures  of  (a) layered, ideal L i M O  2 (M = Ni) and (b) cubic spinel A[M2]O 4. 

preference for tetrahedral-site occupancy. 
The Ni 2+, Ni 3+, and Ni 4+ ions all have a 
strong octahedral-site preference; however, 
displacement does occur above 250~ for 
Li0.sNiO 2 in the transformation to the spinel 
Li[Ni2]O4. 

Fig. 2(c) shows the X-ray powder-diffrac- 
tion pattern for the spinel phase formed from 
Li0.ssNil.0402 in the temperature range 250 < 
T < 300~ Of particular interest is the co- 
alescence of the (108) and (110) reflections 
of the trigonal R3m phase, which indicates 
the transformation to a cubic phase. Based 
on a 2 x 2 x 2 cubic rocksalt lattice, these 
reflections correspond to the_crystallo- 
graphically equivalent (440) and (404) spinel 
reflections in the cubic structure with space 
group Fd3m. The cubic lattice parameter of 
the spinel phase is a = 8.190 A. 

The trigonal (R3m) layered structure of 
ideal LiNiO2 is compared in Fig. 3 with the 
cubic (Fd3m) spinel structure. Formation of 
an [M2]O 4 spinel framework from the trigo- 
nal layered phase Li0.sMO2 only requires a 
cooperative displacement of one quarter of 
the M atoms into neighboring Li-atom 

planes (12). A relatively high room-tempera- 
ture Li +-ion mobility in the interstitial space 
of an [Mz]O 4 spinel framework (13) allows 
the Li + ions to accommodate to the new M- 
atom ordering so as to maximize the electro- 
static Madelung energy. Therefore transfor- 
mation of Li0.sMO z to form Li[Mz]O 4 only 
requires raising the temperature to where 
the interplanar displacements of the M 
atoms take place. In the system Lil_xVOz 
with 0 < x < 0.5, heating results in a dispro- 
portionation reaction into trigonal LiVO2 
and the spinel Li[V2]O4; heating Li0.58 
Ni].o402 to 250-300~ appears to give only 
the spinel phase. The spinel [V2]Q frame- 
work in Lil +x[V2]O4 is stable over the range 
0 -< x -< 1 (14); we did not investigate the 
solid-solution range of Li l+x[Ni2]O4. 

3.2 Properties 

The variation of resistance R with recipro- 
cal temperature, Fig. 4, for Li0.96Nil.o402 
shows semiconductive behavior with an ac- 
tivation energy E a = 0.11 eV below room 
temperature; above room temperature the 
activation energy drops to a small value. 
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FIG. 4. Variation of resistance with reciprocal tem- 
perature for Lio.%Nil.0402. 

Given a mixed-valent configuration with EF 
in the Ni 3+/2+ couple, the activation energy 
below room temperature is to be contrasted 
with metallic conductivity in the perovskite 
LaNiO 3 (15) and with a lack of any activa- 
tion energy in the mobility of the mobile 
holes in LixNi I -xO having x < 0.05 (3). An 
E a = 0.11 eV is typical for small-polaron 
conduction in a mixed-valent system, but 
small-polaron conduction is not expected 
for holes in a primarily O-2p valence band. 
Clearly an " ion i c"  model for the N i -O  
bonding needs modification. 

Resistance measurements were not made 
on the Li0.96_~Ni~.040 2 samples; they are un- 
stable above 250~ which prevents the fab- 
rication of  sintered pellets. However ,  the 
temperature dependence of  the resistance 
of a compacted-powder  pellet of the spinel 
Li[Ni2]O 4 was measured, Fig. 5. In this case 
the mixed-valent couple is Ni 4+/3+, yet this 
compound is also a semiconductor  with an 
activation energy Ea = 0.27 eV. This value 
of Ea is like that of  the small-polaron mobil- 
ity in the spinel Li[Mn2]O 4 (16), which has 
localized manganese moments  and contains 
the strong Jahn-Tel le r  ion Mn 3 + ; 
Li2[Mn2104 is tetragonal due to a coopera- 
tive Jahn-Tel ler  distortion of the Mn3+-ion 
sites by a localized 5Eg(t3el) configura- 
tion (17). 

The literature reports the temperature 
variation of  the magnetic susceptibility of 

nominal LiNiO2 (18) and also of  isostruct- 
ural NaNiO 2 (19). These data confirm an 
earlier deduction (8) that the Ni 3+ ion is in 
its low-spin state, 2E~(t6el) with J ~ S - �89 
which makes it potentially a strong 
Jahn-Tel le r  ion like high-spin Mn 3§ . More- 
over,  they also confirm the presence of  fer- 
romagnetic 90 ~ N i - O - N i  interactions within 
the (111) planes of  nickel atoms, but there 
is no evidence of a cooperat ive Jahn-Tel le r  
distortion. The interplanar coupling be- 
tween ferromagnetic Ni3+-ion planes is 
domina ted- - in  the case of  NaNiOz- -by  
weak, antiferromagnetic N i - O - O - N i  inter- 
actions; these are overwhelmed by a moder- 
ate external magnetic field to give a meta- 
magnetic ant i ferromagnet ic-ferromagnet ic  
transition at a critical field H e = 17.6 koe 
(19). In the case of nominal LiNiO2, excess 
Ni are present  in the Li-atom planes to pro- 
vide antiferromagnetic 180 ~ N i - O - N i  inter- 
actions between a Ni 2+ ion in a Li plane and 
its two neighboring ferromagnetic Ni-atom 
planes. Where these interactions dominate 
the interplanar coupling, nominal LiNiO 2 is 
a ferrimagnet with ferromagnetically cou- 
pled ferromagnetic Ni-atom planes ordered 
antiferromagnetically to the Ni 2+ ions in the 
Li planes (8, 18). 

Octahedral-site Ni 2+ and low-spin Ni 3+ 
and Ni 4+ ions all contain filled t 6 configura- 
tions; these cannot participate in N i -N i  in- 
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FIG, 5. Variation of resistance with reciprocal tem- 
perature for the spinel Li[Ni2]O 4. 
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FIG. 6. Variation of inverse magnetic susceptibility 
with temperature for (a) Li0.58Ni~.0402 and (b) 
Lio.32Nil.0802. 

teractions across a shared octahedral-site 
edge. This situation leaves only 90 ~ 
Ni-O-Ni nearest-neighbor interactions 
within the Ni-atom layers of the R3m struc- 
ture and also within the [Ni2]O 4 framework 
of the spinel structure. For a 90 ~ Ni-O-Ni 
interaction, the partially filled e orbitals on 
neighboring Ni atoms are orthogonal to one 
another; therefore they experience a ferro- 
magnetic direct-exchange (potential ex- 
change) interaction (1). In the mixed-valent 
compositions, the ferromagnetic double- 
exchange interaction is inoperative where 
the mobile electrons are small polarons with 
an activated mobility (1). On the other hand, 
the 180 ~ Ni 2 + - O - N i  2 + superexchange inter- 
actions between half-filled e orbitals are 
strongly antiferromagnetic. In the absence 
of any Jahn-Teller distortion--static or dy- 
n a m i c - t o  order the single e electron of a 
Ni 3 + ion among degenerate orbitals, the 180 ~ 
NiZ+-O-Ni 3+ or Ni3+-O-Ni 3+ superex- 
change interactions are also antiferromag- 
netic. So too would be the weaker 
Ni-O-O-Ni  superexchange interactions. 
These microscopic considerations are con- 
sistent with the macroscopic susceptibility 
data. 

Figure 6 shows the temperature variation 
of the inverse magnetic susceptibility X- ~ of 
Li0.32Nil.0802 and Li0.58Nil.o402 over a lim- 

ited temperature range below room temper- 
ature. The low-spin Ni4+(t6e ~ ions are dia- 
magnetic; only the Ni 3+ ions contribute to 
the paramagnetic susceptibility. Although 
the temperature range is limited, the X-1 v s  

T plot for Lio.ssNi 1.0402 has a positive Weiss 
constant, indicative of the dominance offer- 
romagnetic interactions within the Ni-atom 
planes as in nominal LiNiO 2 and NaNiO2. 
The corresponding curve for Lio.32Nil.0802, 
on the other hand, has a negative Weiss 
constant, and the shape of the plot is typical 
for a ferrimagnet. We therefore conclude 
that the magnetic data provide 
clear--though indirect--evidence for the 
transfer of nickel to the Li-atom planes in 
Li0.96_xNi1.040 2 compositions having x > 
0.46, but not where x < 0.46. 

Figure 7 shows the X-1 vs T plot for the 
sp ine l  Li[Ni2]O 4 ; in this structure the nickel 
atoms are well-ordered onto the octahedral 
sites of the [Ni2]O 4 spinel framework, so 
only 90 ~ Ni-O-Ni direct-exchange and 
weaker Ni-O-O-Ni  superexchange inter- 
actions are operative. The paramagnetic 
susceptibility reveals a strongly positive 
Weiss constant consistent with strongly fer- 
romagnetic 90 ~ Ni-O-Ni direct-exchange 
interactions. However, the compound is not 
ferromagnetic; the susceptibility behaves 
like that of Ge[Ni2]O 4 in which the weaker, 
antiferromagnetic Ni-O-O-Ni  interactions 
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FIG. 7. Variation of inverse magnetic susceptibility 
with temperature for the spinel Li[Ni2]O 4. 
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give rise to a spiral-spin configuration below 
the magnetic-ordering temperature (20). 
Whether this same situation applies to 
Li[Ni2]O 4 is not certain; given the presence 
of diagmagnetic Ni 4 + ions, the lack of ferro- 
magnetism could, in this case, also be due 
to a lack of long-range magnetic order in the 
temperature range investigated. 

What distinguishes these oxides from the 
perovskite LaNiO3, which is metallic and 
Pauli paramagnetic (15, 21), is the presence 
of 90 ~ Ni -O-Ni  interactions rather than 180 ~ 
Ni -O-Ni  interactions. In Li~ _sNi~ + 802, the 
presence of nickel in the Li-atom planes in- 
troduces some 180 ~ Ni -O-Ni  interactions; 
these are antiferromagnetic, and the resis- 
tance data for Li0.93NiO 2 indicates that they 
provide low-resistance conduction paths 
that reduce the resistance and activation en- 
ergy for conduction above room temper- 
ature. 

4. Conclusions 

Lil-8-xNil+802 and the spinel Li[Ni2]O 4 
have been prepared for the first time by the 
chemical extraction--as opposed to electro- 
chemical extract ion--of  lithium with the 
strong oxidizing agent NO2PF 6 . 

Although spectroscopic data have led to 
the classification of NiO as having a charge- 
transfer energy gap, neither Li~_sNil+802 
nor the spinel Li[Ni2]O 4 is metallic; they are 
both small-polaron semiconductors with the 
Fermi energy EF lying in the N? +/2+ redox 
band in the former case, the Ni 4+/3+ redox 
band in the latter case. 

Moreover, the magnetic susceptibility 
data for Lil_ 8 xNi~+802 and the spinel 
Li[Ni2]O 4 indicate the presence of low-spin 
Ni 3 + and Ni 4 + ions with a Ni 3 +-ion magnetic 
moment corresponding to S = �89 and g ~ 2. 
The only property that distinguishes these 
compounds from those having localized- 
electron magnetic moments is the lack of a 

cooperative Jahn-Teller distortion in nomi- 
nal LiNiO2 and NaNiO2. 

The width of the o-* band associated with 
the o--bonding orbitals of e parentage is 
given, in tight-binding theory, by W ~ 2zb, 
where z is the number of like nearest neigh- 
bors and the electron-transfer-energy inte- 
gral b - e~(t0g, t0j) is proportional to the over- 
lap integral (0g,t0i) for crystal-field wave 
functions at sites Ri and Rj. The 90 ~ 
Ni -O-Ni  interactions couple orthogonal 
crystal-field orbitals; orthogonality means a 
b ~ 0 and ferromagnetic direct-exchange 
interactions. On the other hand, the 180 ~ 
Ni -O-Ni  interactions in LaNiO3 couple 
nonorthogonal crystal-field orbitals; nonor- 

2 thogonality gives b - e~(X~ + X~), where 
the X S and ?,~ are the covalent-mixing param- 
eters between the Ni-e and O-s, p~ orbitals, 
respectively. In NiO, where the Ni-e orbit- 
als are half-filled, nonorthogonality gives 
antiferromagnetic Ni2+-O-Ni2+ superex- 
change interactions, whereas in LaNiO 3 
where Ni3+-O-Ni3+ interactions occur, it 
gives a o-* band broad enough to suppress 
spontaneous nickel atomic moments. 

The data reported here provide clear evi- 
dence that the states at the Fermi energy not 
only retain the symmetry properties of the 
Ni-3d electrons of e character even for the 
Ni 4+/3+ couple, but also introduce a sponta- 
neous Ni-atom atomic moment characteris- 
tic of strongly correlated crystal-field orbit- 
als where the near-neighbor interactions 
between Ni atoms are 90 ~ rather than 180 ~ 
Ni -O-Ni  interactions. These observations 
demonstrate that there is a transition from 
more ionic to more covalent Ni-e, O-p~ 
bonding at octahedral-site nickel on oxidiz- 
ing Ni 2+ to Ni 3+ and Ni 4+. Any ionic model 
for NiO does not apply to the oxides of 
nickel in higher oxidation states; holes intro- 
duced by oxidation do not occupy O-2p 
bands, but a Ni 3+/2+ or Ni 4+/3+ redox couple 
having the symmetry of the Ni-e orbitals and 
a massive Ni-O covalent mixing. 
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